KORROm

Unlocking the OPERA Platform

Development and Application of Graph Neural Networks to Design Guide Oligonucleotides that Promote RNA Editing

1. Korro Bio Methodology

- 2. Machine Learning for Chemically Modified Oligonucleotide Design
- 3. Methods for Increasing Use-Cases for ML Oligonucleotide Design
 - New Chemical Modifications
 - New Targets

RNA Editing: Transiently Effecting an A-to-I Edit on RNA Using an Oligonucleotide

OPERA: Our Differentiated Approach for RNA Editing

Chemical Modifications are Employed to Drive Activity and Stability

Chemical Modification Pattern Significantly Impacts Editing of Target mRNA

KORRO[®]

- 1. Korro Bio Methodology
- 2. Machine Learning for Chemically Modified Oligonucleotide Design
- 3. Methods for Increasing Use-Cases for ML Oligonucleotide Design
 - New Chemical Modifications
 - New Targets

Sequence-Level Featurization

Structural Features

Entity Embeddings

Sequence-Level Featurization

Entity Embeddings

Tree-based Models

Convolutional Neural Network

Our Model Learns the Effect of Chemical Modification Patterns on *In Vitro* Editing

- Model tested on 20% of in vitro data for a single target
- Understanding of relationship between sequence, chemical modifications and in vitro editing
- Predictions within **7%** of in vitro editing

Process for Designing Oligonucleotides using Machine Learning

KORRO[®]

Machine Learning Boosted mRNA Editing Through Iterative Design Batches

KORRO⁶ 12

- 1. Korro Bio Methodology
- 2. Machine Learning for Chemically Modified Oligonucleotide Design
- 3. Methods for Increasing Use-Cases for ML Oligonucleotide Design
 - New Chemical Modifications
 - New Targets

Biological Feature Extraction Can Help Us Increase Use-cases for Machine Learning

Monomer-Level Featurization

. . .

Atom-Level Featurization

Increasing Chemical Featurization Trends in a ~1% Increase in Overall Error of Model

KORRO[®]

- 1. Korro Bio Methodology
- 2. Machine Learning for Chemically Modified Oligonucleotide Design
- 3. Methods for Increasing Use-Cases for ML Oligonucleotide Design
 - New Chemical Modifications
 - New Targets

Testing The Model's Ability to Incorporate New Modifications at Scale

Assessing Chemical Generalization:

- Models are trained on all data **BEFORE** the introduction of a new modification
- Models are tested on the data from the batches that introduced the modification

Chemical Features Improve Overall Error Across 8 Unseen Modifications in Oligonucleotides

Chemical Modifications are Often Tested in "Titration" Experiments

New Chemical Modification Titration

Chemically Generalized GNN Can Help Us with New Modification Titrations

KORRO[®] 22

- 1. Korro Bio Methodology
- 2. Machine Learning for Chemically Modified Oligonucleotide Design
- 3. Methods for Increasing Use-Cases for ML Oligonucleotide Design
 - New Chemical Modifications
 - New Targets

To Use Our Data on New Targets, We Needed to Take the Opposite Approach

KORRO[®]

24

Target-Agnostic Featurization

Oligo-Target Interaction Features Lead to Better Models for New Targets and Cell Lines

KORRO[®] 25