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U n l o c k i n g  t h e  O P E R A  P l a t f o r m

Development and Application of Graph 
Neural Networks to Design Guide 
Oligonucleotides that Promote RNA Editing
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Overview of Topics 

1. Korro Bio Methodology
2. Machine Learning for Chemically Modified Oligonucleotide Design
3. Methods for Increasing Use-Cases for ML Oligonucleotide Design

• New Chemical Modifications
• New Targets 
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Target 
RNA

Adenosine Inosine
ADARADAR

Oligo-RNA duplex recruits adenosine 
deaminase acting on RNA (ADAR)

ADAR catalyzes 
deamination: ‘A’ to ‘I’ edit

mRNA translated to 
protein with ‘I’ read as ‘G’

Resultant 
therapeutic protein

DNA with disease-
causing mutation
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RNA Editing: Transiently Effecting an A-to-I Edit on RNA Using an Oligonucleotide
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OPERA: Our Differentiated Approach for RNA Editing

Deep understanding of 
ADAR biology

Machine learning optimization 
of oligonucleotidesFit-for-purpose delivery 

Expertise in oligonucleotide 
chemistry

1 IP estate count as of September 18, 2023
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Chemical Modifications are Employed to Drive Activity and Stability

Korro leverages established and novel 
chemical modifications to improve 

pharmacology of ADAR guide oligonucleotides

Examples of chemical modifications in 
approved products
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Chemical Modification Pattern Significantly Impacts Editing of Target mRNA
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Overview of Topics 

1. Korro Bio Methodology
2. Machine Learning for Chemically Modified Oligonucleotide Design
3. Methods for Increasing Use-Cases for ML Oligonucleotide Design

• New Chemical Modifications
• New Targets 
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Entity EmbeddingsStructural Features

Sequence-Level Featurization
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Entity Embeddings
Tree-based Models

Convolutional Neural Network

Sequence-Level Featurization
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Our Model Learns the Effect of Chemical Modification Patterns on In Vitro 
Editing

r = 0.80
• Model tested on 20% of in vitro data for 

a single target

• Understanding of relationship between 
sequence, chemical modifications and 
in vitro editing 

• Predictions within 7% of in vitro editing
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Process for Designing Oligonucleotides using Machine Learning

Top Performing Oligos

1.  Apply random changes to 
top performing oligos

2. Train regression models on 
all data

Tree-Based Methods Tabular Deep Learning

3. Run inference on modified 
dataset

Graph Neural Networks
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Machine Learning Boosted mRNA Editing Through Iterative Design Batches
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Overview of Topics 

1. Korro Bio Methodology
2. Machine Learning for Chemically Modified Oligonucleotide Design
3. Methods for Increasing Use-Cases for ML Oligonucleotide Design

• New Chemical Modifications
• New Targets 
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AUGCACAGG
Sequence

Sugar

Base

Linker

MonomersAtoms

Biological Feature Extraction Can Help Us Increase Use-cases for Machine 
Learning
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Sugar n
Linker n
Base n
Sugar n+1
Linker n+1
Base n+1

Sugar n

Linker n

Base 
n

Linker n+1
Base n+1

Sugar n+1 Path-Based Fingerprint

…

… n-1

n+2

Graph Neural Network

Monomer-Level Featurization



16

Starting Structure Input Representation

Atomic Symbol?
Atom Degree?

Implicit Valence?
Hybridization?

Number of 
Hydrogens?

Stereochemistry?

Node attributes X

Graph Neural Network

Atom-Level Featurization
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Increasing Chemical Featurization Trends in a ~1% Increase in Overall Error of Model 

r = 0.80
Sequence Monomer

r = 0.78
Atom

r = 0.66
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Overview of Topics 

1. Korro Bio Methodology
2. Machine Learning for Chemically Modified Oligonucleotide Design
3. Methods for Increasing Use-Cases for ML Oligonucleotide Design

• New Chemical Modifications
• New Targets 
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Testing The Model’s Ability to Incorporate New Modifications at Scale

Timeline of Batches

First Assay at 
Korro Bio

Introduction of chemical 
modification 1

Introduction of chemical 
modification 2

Introduction of chemical 
modification 3

Assessing Chemical Generalization:
• Models are trained on all data BEFORE the introduction of a new modification
• Models are tested on the data from the batches that introduced the 

modification
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Chemical Features Improve Overall Error Across 8 Unseen Modifications in 
Oligonucleotides
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Chemical Modifications are Often Tested in “Titration” Experiments

New Chemical Modification Titration

New Modification

Parent Oligonucleotide

Modification 1
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Chemically Generalized GNN Can Help Us with New Modification Titrations
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r = 0.72

r = 0.06

r = 0.47

r = -0.04 r = 0.03

r = 0.65
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Overview of Topics 

1. Korro Bio Methodology
2. Machine Learning for Chemically Modified Oligonucleotide Design
3. Methods for Increasing Use-Cases for ML Oligonucleotide Design

• New Chemical Modifications
• New Targets 
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To Use Our Data on New Targets, We Needed to Take the Opposite Approach

A U G C

m d f m

Sequence-Based Featurization

Insert Relationship to Target A U G C

m d f m

Target-Agnostic Featurization

A A C G
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ACTB

ρ = -0.07

ρ = 0.49 ρ = 0.49ρ = 0.61

ρ = -0.08 ρ = 0.15

ML Predictions

Editing

Oligo-Target Interaction Features Lead to Better Models for New Targets and Cell 
Lines 

Ta
rg

et
 A

gn
os

tic
Se

qu
en

ce

M
od

el
 P

re
di

ct
io

ns


	Slide 1: Development and Application of Graph Neural Networks to Design Guide Oligonucleotides that Promote RNA Editing
	Slide 2
	Slide 3
	Slide 4: OPERA: Our Differentiated Approach for RNA Editing
	Slide 5: Chemical Modifications are Employed to Drive Activity and Stability
	Slide 6: Chemical Modification Pattern Significantly Impacts Editing of Target mRNA
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Our Model Learns the Effect of Chemical Modification Patterns on In Vitro Editing
	Slide 11: Process for Designing Oligonucleotides using Machine Learning
	Slide 12: Machine Learning Boosted mRNA Editing Through Iterative Design Batches
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Increasing Chemical Featurization Trends in a ~1% Increase in Overall Error of Model 
	Slide 18
	Slide 19: Testing The Model’s Ability to Incorporate New Modifications at Scale
	Slide 20: Chemical Features Improve Overall Error Across 8 Unseen Modifications in Oligonucleotides
	Slide 21: Chemical Modifications are Often Tested in “Titration” Experiments
	Slide 22: Chemically Generalized GNN Can Help Us with New Modification Titrations
	Slide 23
	Slide 24: To Use Our Data on New Targets, We Needed to Take the Opposite Approach
	Slide 25: Oligo-Target Interaction Features Lead to Better Models for New Targets and Cell Lines 

