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RNA Editing: Transiently Effecting an A-to-I Edit on RNA Using an Oligonucleotide
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OPERA: Our Differentiated Approach for RNA Editing

ADAR BIOLOGy
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Chemical Modifications are Employed to Drive Activity and Stability
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Chemical Modification Pattern Significantly Impacts Editing of Target mRNA
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Sequence-Level Featurization

Structural Features Entity Embeddings
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Sequence-Level Featurization

Tree-based Models
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Our Model Learns the Effect of Chemical Modification Patterns on /n Vitro
Editing
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r=0.80

 Model tested on 20% of in vitro data for
a single target

* Understanding of relationship between
sequence, chemical modifications and
in vitro editing

* Predictions within 7% of in vitro editing
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Process for Designing Oligonucleotides using Machine Learning

Top Performing Oligos
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Machine Learning Boosted mRNA Editing Through Iterative Design Batches
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Biological Feature Extraction Can Help Us Increase Use-cases for Machine
Learning
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Monomer-Level Featurization
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Atom-Level Featurization

Starting Structure Input Representation Graph Neural Network

Atomic Symbol?
Atom Degree?
: Implicit Valence?
Node attributes X | " e ton?
Number of
Hydrogens?
Stereochemistry?

KORROZ =




Increasing Chemical Featurization Trends in a ~1% Increase in Overall Error of Model
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Testing The Model’s Ability to Incorporate New Modifications at Scale

Timeline of Batches
® O
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Korro Bio

modification 1 ‘

Introduction of chemical |
modification 2 @
Introduction of chemical
modification 3

Assessing Chemical Generalization:
 Models are trained on all data BEFORE the introduction of a new modification

 Models are tested on the data from the batches that introduced the
modification
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Chemical Features Improve Overall Error Across 8 Unseen Modifications in
Oligonucleotides
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Chemical Modifications are Often Tested in “Titration’ Experiments

New Chemical Modification Titration
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Chemically Generalized GNN Can Help Us with New Modification Titrations
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To Use Our Data on New Targets, We Needed to Take the Opposite Approach

Target-Agnostic Featurization

Sequence-Based Featurization

Insert Relationship to Target
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Oligo-Target Interaction Features Lead to Better Models for New Targets and Cell
Lines
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